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Abstract !

Range data is very important in human-computer
interaction applications. Although less costly, range
acquisition and processing still presents a speed vs.
data reliability tradeoff. This paper proposes a method
that, given noisy and generally unreliable range data,
can filter out erroneous information using range his-
tograms. Then, using the resulting consistent data that
has passed filters, this method limits the depth search
space dynamically using motion history and its current
state.

Ezperimental results demonstrate the success of the
proposed algorithm. Using filtered range data, the al-
gorithm correctly identified the hand involved in ma-
nipulation 99.8% of the time. Dynamic disparity ad-
justment produced a speedup of 60.2% over a static
disparity range selection. An application to virtual re-
ality navigation is also presented.

1 Introduction
1.1 Motivation: Why Range?

The usefulness of range data in interfaces based on
human-computer communication applications is not
questionable because of improved quality of subse-
quent motion analysis, as well as expanded data us-
ability. Three major uses of range data are:

1) assistance in correspondence estimation;

2) separation of the active (or manipulating) hand
from other body parts or skin-colored objects; and

3) acquisition of the resulting object trajectory in 3-D
for motion analysis.

First, the projection of human movement is always
affected by the observation viewpoint and the distance
from the camera [19]. Since machine vision systems
try to recover useful information about a scene from
its projections, having three-dimensional (3-D) data
eliminates ambiguities in solving the inversion of a
many-to-one mapping [5]. Most gesture-tracking and
recognition applications will certainly benefit from in-
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cluding range data and recovering additional informa-
tion from a scene.

The latter also satisfies the second goal, eliminat-
ing any reliance on background subtraction techniques
and workspace restrictions (color-coding, movement
constraints, or limiting initialization assumptions).
This is necessary to achieve usability in large visualiza-
tion or virtual reality environments. Such applications
involve dynamic backgrounds that include other peo-
ple interacting with the system, as well as skin-colored
elements in objects of interest and in backgrounds.

The third benefit of range data is an obvious im-
provement in trajectory analysis. Trajectory analysis
is domain-specific, yet most recognition and predic-
tion tools rely on 3-D input. Trajectory determines
the type of gesture and other application-specific pa-
rameters. They are passed by a motion-interpretation
interface passes to the back-end system.

1.2 Problems

Until recently, however, using range data for track-
ing and other interactive applications was not feasible
due to speed and reliability considerations. Range im-
age acquisition and computation is a time-consuming
process. For instance, it requires on average more then
30 seconds to acquire and compute range data using a
K2T scanner on a SUN SPARC 20, and more than
2 minutes using a Cyberware scanner on a Silicon
Graphics O2 (considering higher precision achieved
with the latter). Recent availability of less expensive,
faster range data (for instance, a Digiclops system [8])
makes it a feasible source of information for interac-
tive HCI applications; however, an additional speedup
is still needed. Also, an obvious trade-off results in a
significant loss in the quality of data. This necessitates
a noise analysis of range data. Obvious approaches,
such as choosing median range values for segmented
regions or even averaging, lead to ill-defined trajec-
tories that cannot be smoothed or interpolated with
conventional techniques. Attempts to improve the ef-
ficiency of range computation also face significant dif-
ficulties, as selected samples may contain too much
noise to be reliable.



1.3 Previous Work

Some researchers have used multiple cameras
and models to obtain 3-D locations of body parts.
Azarbayejani and Pentland [2] triangulated on blobs
comprising a model. Gavrila and Davis [7] addressed
whole-body tracking with four cameras placed in the
corners of the room. Segen and Kumar [15] used depth
cues from projections of the hand and its shadow for
3-D hand-pose estimation. Davis and Shah presented
a tracking method by fitting 3-D models (generalized
cylinders) to fingers in a 2-D image [5]. Otherwise,
range data was used in motion analysis primarily in
an offline mode [17]. Recent approaches to improv-
ing efficiency of range data (such as [16]) attempted
to limit stereo computation to smaller regions found
in respective color images. This paper introduces a
“self-reliant” range processing mode in which noise is
effectively filtered out, allowing the robust dynamic
adjustment of minimum and maximum disparities.

Traditional approaches to tracking typically relied
on segmentation of the intensity data, using motion
or appearance data. A majority of the methods be-
gan by segmenting the human body from the back-
ground. For instance, in “blob approaches” people
were modeled as a number of blobs resulting from
pixel classification based on their color and position
in the image. Wren et al. [18] achieved segmentation
by classifying pixels into one of several models, in-
cluding a static world and a dynamic user represented
by gaussian blobs. Yang and Ahuja [20] used skin
color and the geometry of palm and face regions for
segmentation stages of their system. A Gaussian mix-
ture (with parameters estimated by an EM algorithm)
modeled the distribution of skin-color pixels. Rehg
and Kanade [14] used a 3-D hand model to track a
hand. They compared line features from the images
with the projected model, and performed incremen-
tal state corrections. Similar work was presented by
Kuch and Huang [10] in which the synthesis process
could fit the hand model to any person’s hand. Bo-
bick and Wilson [3] treated gesture as a sequence of
states and computed configuration states along proto-
type gestures. Yacoob and Black proposed parameter-
ized representation of human movement [19]. Cutler
and Davis [4] segmented the motion and computed a
moving object’s self-similarity (including human mo-
tion experiments). A review by Aggarwal and Cai [1]
classified approaches to human motion analysis, the
tasks involved, and major areas related to human mo-
tion interpretation. A review by Pavlovic et al. [12]
addressed main components and directions in gesture
recognition research for HCI.

1.4 Overview

A representative frame in each image sequence con-
sists of both intensity and range images (Figure 1)
showing the execution of basic sets of gestures appli-

cable to visualization or virtual object manipulation
(such as zoom, rotation and translation). Problems
are notable in the range image.

The premise of this work is that, given noisy and
generally unreliable range data, we can filter out
erroneous information using range histograms (Sec-
tion 2.1). Next, using the resulting consistent data
that has passed filters, it is possible to limit the depth
search space dynamically (Section 2.2). Such localiza-
tion is possible if expectations of the movement be-
havior are available. This allows for efficient hand
tracking (Section 2.3). An application to virtual re-
ality navigation is presented (Section 3). Experimen-
tal results, underlying theory and conclusions are also
presented.

Figure 1: Typical intensity and range images. Note
problems in the range data.

2 Solutions
2.1 Histogram-Based Range Filtering

Range data quality is the cental issue. In recent
systems it is traded off for some additional speed; and
testing is needed before including it in motion estima-
tion. It is obvious (Figure 1) that acquired range is
not smooth, and noise is quite significant even in fore-
ground objects. A gesture-tracking system normally
includes estimation of 3-D coordinates for a hand(s)
used in object manipulation. When a high-precision
scanner is used, choosing median range values for seg-
mented regions, or even averaging, is an adequate ap-
proximation needed by the trajectory analysis. Exper-
iments have shown, however, that such conventional
approaches fail when presented with data sets where
the signal to (overall) noise ratio could be as low as 1
for many frames. This necessitates a noise analysis of
range data.

It has been observed that correct range values for a
small region of interest (ROI), such as a human hand,
are clustered together in depth. Noisy depth estimates
are distributed across the range of disparities searched.
Therefore, a logical solution involves a histogram of
range values of skin pixels for each ROI. The scope of
computed depth values is split into a number of bins.
When the program starts, minimum and maximum
disparities are set according to the expected depth of
the scene. In our case, a rather large workspace vol-
ume is included: from 0.2m to 5.0m. Since each bin



is set to 0.16m width, the system starts with 30 bins.
The bin width was determined experimentally to cover
the depth needed for various hand positions. Then,
the system dynamically adjusts the range of dispar-
ities to cover [-0.25m, 1.0m] from the previous hand
location which results in 8 bins. If needed, the system
can vary the limits as well.

A representative summary of selected skin regions
for a frame is shown in Table 1. Two regions are an-
alyzed, Ry (1532 pixels) and R, (1312 pixels). This
table corresponds to Figure 2. Each bin in Figure 2(a)
also represents a range of depth values. The largest bin
is assumed to be a representative collection of pixels
for the ROI; everything else is considered noise. The
importance of histogram-based filtering leads to cor-
rect hand detection and tracking (described in details
in Section 2.3). In regards to the example shown, com-
putation of “centers of gravity” (COGs) of respective
regions yields [0.05, -0.26, 1.37] and [-0.20, -0.06, 0.82].
Since we assume that the region of interest (the hand
involved in object manipulation) is the closest skin re-
gion to the camera (see Section 2.3), R, is identified
as the hand region. This is illustrated by overlaying
the range data and the COG on Figure 2(b). Analysis
of results shows that the technique is very robust and
does not slow the process down.

Table 1: Histogram for a frame with a depth range
[0.58, 1.83]. Two regions are analyzed, Ry (1532 pix-
els) and Ry (1312 pixels).

| Bin | Range || Ry, pix | % || R,, pix | % |

0 0.58, 0.73 7 0.46 194 14.79
1 0.73, 0.89 28 1.83 875 66.70
2 0.89, 1.04 11 0.72 166 12.65
3 1.04, 1.20 2 0.13 32 2.44
4 1.20, 1.36 1060 69.19 17 1.30
5 1.36, 1.51 424 27.68 10 0.76
6 1.51, 1.67 0 0 14 1.07
7 1.67, 1.83 0 0 4 0.30
a00 /_- [-0.2, -0.1, 0.82]
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(a)
Figure 2: Range histogram (a) and resulting region
location estimation (b).

2.2 Dynamic Disparity Localization
Range Computation. The Digiclops stereo vi-
sion system [8] computes range based on triangulation

between cameras. It consists of a three-camera mod-
ule. Offset in positions of the cameras produces differ-
ences in resulting images. These images are compared
using square masks to establish correspondences [8]:
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where din and dpg, are the minimum and maxi-
mum disparities, M is the mask size, I,;gp+ and e
are the right and left images, respectively [8]. Since
the camera parameters (their relative positions, the
focal length and resolution) are fixed, re-calibration is
not usually required. According to the multi-baseline
stereo theory [11] used in the stereo computation by
the system, distance z to the scene point is related to
the disparity d, baseline length B and focal length F':

1
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The total amount of computation for stereo pro-
cessing per frame (required for the Sum of Absolute
Differences algorithm) is estimated as [11]:

N2M?d(C —1)P (3)

where N? is the image size, C is the number of cameras
(three for the system used), and P is the number of
operations per one square difference calculation.

Dynamic Adjustment of Disparities. It has
therefore been observed that the speed of range com-
putation is affected by a range of disparities consid-
ered in the system. Larger range allows us to take
more possibilities into account, avoiding generation
of an erroneous depth information for a part of the
scene. It leads, however, to a drastic slowdown, which
is clearly unacceptable in a HCI system. This search
depth can be limited if the range is reliable (as dis-
cussed in Section 2.1), and if some prior knowledge
about the behavior of the ROI is available.

Human behavior during the interaction can be
quantified to define such limits. In our applications
(gesture-controlled visualization and virtual reality)
gestures take more than 1 second, the range of hand
motion is less than 1m (an approximate arm length).
Therefore, at a rate of 5-6 frames/second (fr/sec), the
difference in the hand position between two frames can
be between 0.17 and 0.20m (forward or backward).
Adopting an even more conservative estimate for ro-
bustness, we search +/-0.25m from the previous hand
location. However, this range is expanded to include
the body of the interacting person, which cannot be
more than 1m behind the manipulating hand. Range
computation of other skin regions such as a face is
necessary for successful differentiation between them.
Thus, the resulting range [-0.25m, +1.00m] spans a



possible hand movement forward, to the depth where
the human body can be found (Figure 3). Spatio-
temporal correlation produces a possibility of search-
ing within a smaller region, based on the match in the
previous frame.

The system still needs to search the entire scene
depth [0.2m, 5.0m] upon the initialization to get its
bearings. Another possibility for reset occurs when
the depth becomes negative, which has never occurred
in our experiments to date. This prevents trapping
in the wrong depth range, for instance, when a wrong
region is temporarily considered to be a ROI. Tracking
is never perfect, and recovery has to be transparent to
the system, so that the loss of one frame does not
degrade the quality of motion analysis. Frame rates
for different sequences on a Pentium 4 PC 1.5GHz
with 512 MB RAM are shown in Table 2 (other results
for these sequences are discussed in Table 3). The
average rate is 5.51 fr/sec, which yields a speedup of
60.2% over experiments with a static disparity range
selection [0.2m, 5.0m] (on average 3.44 fr/sec).
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Figure 3: Ilustration of dynamic disparity range ad-
justment.

Table 2: Frame rates (fr/sec) for different sequences.
[Sea | 1 [ 2 [ 3 [ 4[5 [ 6 ] 7 |
| Rate [ 5.57 | 5.52 | 5.54 | 5.49 [ 5.42 [ 5.49 | 5.57 |

2.3 Detection of Manipulating Hands

We detect the manipulating hand by detecting skin
regions using color and shape, and then differentiat-
ing the hand involved in manipulation using its 3-D
location. We introduce the SCT color space first.

SCT Color Space. The color image analysis is
difficult because color data is highly sensitive to light-
ing conditions. Stability is obtained when the color
attributes of a certain region are the same regardless
of lighting conditions. Therefore, many researchers
have attempted to transform color to a system that is
less influenced by the changes in illumination.

The spherical coordinate (SCT) transform [13] sep-
arates illumination information from color informa-
tion. It transforms [R,G,B] to [L,A,B] by

L = VR?>+G?+ B? (4)

/A = cos™! [g] (5)

tB = cos [Lsm(zA)} (©)

L is the distance of the color from the origin of RGB
color space. /A is the angle that the vector of color
from origin makes with the blue axis, while /B is the
angle that the projection of vector to the RG plane
forms with the red axis.

Skin Region Detection in Color Images. Skin
pixels are classified with a minimum distance classi-
fier by Mahalanobis distance. First, we train the skin
classifier on a set of collected sample skin pixels (of-
fline). During the detection, the [R,G,B] pixel values
are transformed to [L,A,B] using SCT. Since L corre-
sponds to the illumination information, we need only
A and B to represent the skin color. Each skin pixel
forms a vector (X) and we compute the mean vector
M, and covariance matrix C,. Then, the Mahalanobis
distance r is defined as

r= /(X = M,)Co (X = M) (7)

If 7 < Tspin_maz_dist, then X is classified as a skin
color. We used 0.75 for Tsrin_maz_dist- 1o filter out
the small regions (noise), an erosion operation is ap-
plied, followed by dilation. The erosion changes the
skin pixel to a non-skin pixel if 2 or more of its 4-
connected neighbors are background. The dilation
converts the non-skin pixel to skin pixel if any of its
4-connected neighbors is a skin pixel. After the noise
removal, the skin image is segmented using connected
component analysis. Then, the regions smaller than
Tmin_region_size are eliminated. The threshold is com-
puted as 0.0012 -R - C where the image dimension is
R x C. For our experiment with image size of 320 x
240, the minimum size is 92 pixels. We noted that the
rectangular hand regions are usually close to squares.
Thus, we discard regions whose height:width is less
than Toin_HW _ratio (meaning regions that are too flat)
or greater than Toee HW _ratio (meaning that the re-
gions are too tall). We used the range of [0.25, 4.0] for
the height:width ratio.

Identification of the Manipulating Hand. The
previous step detects skin regions including faces,
hands, legs and other body parts, since they all could
pass the height:width ratio check. We assume that
the hand gesture occurs in front of the body. So, the
skin region closest to the camera is identified as the
manipulating hand. The 3-D location of each pixel
is given by range images. We determine the 3-D lo-
cation of the region by using histogram-based range
filtering as mentioned in Section 2.1. Since the z in-
creases from the camera toward the scene, the region
with the smallest z is identified as the manipulating
hand region (as shown in the example discussed in



Section 2.1). We noted that the accuracy of range
data along the boundary of the skin regions could be
especially low. Therefore, we first perform erosion on
the skin regions, and then compute the 3-D location
of regions using the pixels inside the boundary.

Table 3 includes results for seven sequences used
for testing. Of 1043 images, the algorithm correctly
identified the manipulating hand 1041 times (99.8%).
Two erroneous results are due to identical depth read-
ings obtained for the face and the manipulating hand
in those two cases. Selected frames for two sample
manipulations (translation and zoom) are shown in
Figure 4.

Table 3: Hand detection results for seven se-
quences (MH=manipulating hand, NMH=non-MH,
OSR=other skin regions, NSR=non-skin regions,
TMH=total MH.

correct incorrect
dataset MH [ NMH | OSR | NSR [ TMH
1 98 0 0 0 98
2 199 0 0 0 199
3 98 0 0 0 98
4 198 0 0 0 198
5 50 0 0 0 50
6 198 0 2 0 200
7 200 0 0 0 200
total 1041 0 2 0 1043
total (%) 99.8 0.0 0.2 0.0 100.0

Figure 4: Selected frames for two sample manipula-
tions: translation (top row) and zoom (bottom row).
Hands used for manipulation are (automatically) de-
tected and shown in natural skin colors, whereas the
rest of each image is displayed as greyscale for visual-
ization.

3 Application to Virtual Reality Nav-
igation

An important part of any virtual reality (VR) sys-
tem is position-tracking and mapping [6]. Tracking
is defined as the real-time position and orientation
estimation of a moving object, and mapping refers
to surface measurements. Depending on the appli-
cation, tracking certain body parts is fundamental to
its success (for instance, head and eye tracking for vi-

sual displays, hand and arm tracking for haptic inter-
faces, and body surface mapping for videoconferenc-
ing). Tracking human body parts is also vital in the
context of controlling computer-generated (or remote)
objects (for example, in telerobotics).

Most existing trackers suffer from discomfort-
related issues [6]. For example, mechanical trackers
are inexpensive and reasonably accurate. Body-based
trackers (such as hand controllers, joysticks, or helmet
attachments), however,restrict spontaneity and natu-
ral motion, whereas ground-based devices (e.g., hand
controllers) limit the workspace by literally binding an
operator to the ground. Another disadvantage is the
limited number of degrees of freedom (DOFs) that can
be measured (when multiple limbs are moving).

Similarly, traditional controls can also be replaced
with gestures (manipulations). Conventional controls
include 3- and 6- dimensional mice/trackball/joystick
devices. They differ from their desktop equivalents
by having extra buttons and wheels that are used to
control not just the XY translation of a cursor, but
its Z dimension and rotations in all three directions.
This section shows that optical trackers/controls can
be used instead of, or in addition to, other control and
tracking elements (Figure 5). Combination of these
functions points to the efficiency of the approach, in
addition to the comfort issues already discussed.

Control
interface

Positionin Camera-based
aVRworld

Action/ manipulatior
by an operator 4”

Other trackers

Computation of action
and/or change in positions

—— Mapping of new positions r*+——

Figure 5: Integration of optical processing into a VR
system.

Computed 3-D coordinates of hand positions from
tracking zoom and translation gestures (input se-
quences are not shown; they are similar to ones shown
in Figure 4) are transfered to a VR system. Figure 6
shows the application of computed hand-motion to the
virtual hand (view from above, the hand is a smaller
moving circle with crosshairs). An arrow in the first
images represents direction of the motion in the XY
plane. Only selected frames are included.

4 Conclusions

The usefulness of range data in interfaces based on
human-computer communication applications is not
questionable because of improved quality of subse-
quent motion analysis as well as expanded data usabil-
ity. Although less costly, range acquisition and pro-



Figure 6: Applying computed hand motion to the vir-
tual hand (view from above) for a zoom (top row) and
translation (bottom row) gestures.

cessing still presents a speed vs. data reliability trade-
off. This paper proposed a method that, given noisy
and generally unreliable range data, can filter out er-
roneous information using range histograms. Next,
using the resulting consistent data that has passed fil-
ters, this method limited the depth search space dy-
namically using motion history and its current state.
With fast and reliable range data, an object of inter-
est can be separated from other objects or background
by depth alone. The algorithm also includes a robust
skin-color segmentation that is insensitive to changes
in lighting conditions.

Experimental results demonstrated the success of
the proposed algorithm. Using filtered range data,
the algorithm correctly identified the hand involved in
manipulation 99.8% of the time. Dynamic disparity
adjustment produced a speedup of 60.2% over a static
disparity range selection. An application to virtual
reality navigation was also presented.

Other applications tracking the motion of the hu-
man body can benefit from improved quality and
speed of range data. These applications include video-
surveillance, gesture-based interfaces for multimedia
applications and systems, interfaces for people with
disabilities that prevent them from using the standard
input technology, and videoconferencing.
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